

Factorial Approach to Design						
Overview						
 Investigate relationships 						
Input factors						
Output responses						
 Full factorial designs are unmanageable 						
 #Levels^{#Factors} = Factorial points 						
CD media can have up to 100 individual components						
 Analysis at 2 levels without replication 						
$(2^{100} = 1,267,650,600,000,000,000,000,000,000,000)$						
 Infeasible due to lack of technology and insufficient resources 						
Full Factorial Design Experimentation not Feasible						
8	Thermo Fisher					

Empirical and Factorial Approach to Optimization

Manageable factorial approaches

- · Grouping 'classes' of components
- · Limiting factors studied to 'key' components
- · Metabolic pathways and effects of factors present

DOE factorial approach

- · Analyze levels of components that are already known to be essential
- · Identify components that are not relevant

Metabolic Pathway Design

- · Balance nutrient supply to achieve high cell viability and productivity
- · High throughput screening for much larger design space
- · Higher degree of replication for each treatment
- · Drive performance through customized formulation for specific cell line applications

Thermo Fisher

· Formulating for nutritional demand

9

Material Demand Phase I , II, III & Market Size									
Required runs at given scale and productivities									
		Demand (g)	Bioreactor	Har	Harvest titer (g/L)				
			Volumes (L)	1	2	3			
				Number of Runs					
1	Preclinical	50	100	1	0.5	0.3	7. –		
Ľ	Phase I	250	100	5	2.5	1.7	li -		
Ľ.	Phase I	250	250	2	1	0.7			
H.	Phase II	1000	250	8	4	2.7	1		
L.	Phase II	1000	1000	2	1	0.7	ji -		
1	Phase III	10000	2000	10	5	3.3			
	Market Size	250000	10000	50	25	16.7			
	Market Size	250000	5000	100	50	33.3			
DSP Yield - 50%									
1	16 ThermoFisher								

